Affiliation:
1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract
Gaseous and vaporous cavitation is extremely harmful to axial piston pumps, such as reducing flow rate, increasing flow pulsation, increasing vibration, increasing noise, and shortening life. To suppress the cavitation and improve the performance of axial piston pumps, a mathematical model for suppressing cavitation in the plunger chamber with a constant theoretical flow rate is innovatively established by combining the flow equation of the plunger pump and the pressure drop equation of the plunger chamber. Based on the model, two methods to suppress cavitation in the plunger chamber under the condition of a constant theoretical flow rate are proposed. The first method is to increase the distribution circle radius and correspondingly reduce the rotation speed, and the second method is to increase the plunger chamber radius and correspondingly reduce the rotation speed. To verify the effectiveness of these two methods, the CFD model of the axial piston pump is established, and the correctness of the model is verified by experiments. The results show that the two methods can effectively suppress cavitation in the plunger chamber, improve the actual flow rate, and reduce the flow pulsation under the condition of a constant theoretical flow rate. The research results can provide an important reference for the design and optimization of the plunger pump.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献