CAMELYON 17 Challenge: A Comparison of Traditional Machine Learning (SVM) with the Deep Learning Method

Author:

Sun Tianbo1,Meng Tong2ORCID,Liu Yutong3

Affiliation:

1. Department of Electronic Science and Technology, Xi’an University of Technology, Xi’an 710061, China

2. Department of Bioinformatics, Queen Mary University of London, London E1 4NS, UK

3. Department of Physics, Beihang University, Beijing 100191, China

Abstract

The pathologist’s diagnosis is crucial in identifying and categorizing pathological cancer sections, as well as in the physician’s subsequent evaluation of the patient’s condition and therapy. It is recognised as the “gold standard”; however, both objective and subjective pathological diagnoses have limits, such as tissue corruption resulting from the nonstandard collection of diseased tissue, nonstandard tissue fixation or delivery, or a lack of necessary clinical data. In addition, diagnostic pathology encompasses too much information; thus, it requires time and effort to grow a trained pathologist. Consequently, computer-assisted diagnosis has become an essential tool for replacing or assisting pathologists with computer technology and graphical development. In this regard, the CAMELYON 17 competition was designed to identify the best algorithm for detecting cancer metastases in the lymph. Each participant was given 899 whole-slide photos for the development of their algorithms. More than 300 people enrolled on the competition. CAMELYON 17 is primarily focused on the categorization of lymph node metastases. The TNM classification system is the primary classification system. Participants at CAMELYON 17 mostly use categorization and learning techniques in deep learning and machine learning. In order to get a better understanding of the top-selected algorithms, we examine the advantages and limitations of traditional machine learning and deep learning for classifying breast cancer metastases.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3