Impact of Technical Indicators and Leading Indicators on Stock Trends on the Internet of Things

Author:

Chen Chien-Ming1ORCID,Gong Yuxiao1ORCID,Wu Jimmy Ming-Tai1ORCID

Affiliation:

1. Shandong University of Science and Technology, Qingdao, China

Abstract

The Internet of things (IoT) has had an enormous impact on the financial industry. With IoT, people can obtain real-time financial information; moreover, investment and financial management have become more flexible and diverse. Because of their high returns and strong liquidity, stocks have become essential commodities through which people invest and manage money. However, high returns are often associated with high risks. Therefore, it is important for investors to forecast the trends of future stock prices. This study uses a new stock trend prediction framework to predict changes in the stock price direction on the next trading day using data from the past 30 trading days. This framework uses two-dimensional convolutional neural networks to classify stock prices into three categories: up, down, and flat. In addition, to analyze the influence of different types of input on the prediction model, historical data, futures, options, technical indicators, and mixed data are taken as the model’s input. Experiments on US and Taiwan stocks proved the validity of the prediction model. The method proposed in this study is compared with buy-and-hold and random choice trading strategies. Results show that the model’s profitability is better than the two baseline strategies.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Trading Strategies: A Multi-indicator Analysis for Profitable Algorithmic Trading;Computational Economics;2024-08-05

2. Stock Trading Decision Method Based on Stop Loss Double Threshold;2023 8th International Conference on Computer and Communication Systems (ICCCS);2023-04-21

3. Application of ARIMA Time Series Model in Stock Data Prediction;Advances in Intelligent Information Hiding and Multimedia Signal Processing;2023

4. Visualization Analysis of Stock Data Based on Tableau;Advances in Intelligent Information Hiding and Multimedia Signal Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3