Experimental and Numerical Studies of the Film Cooling Effectiveness Downstream of a Curved Diffusion Film Cooling Hole

Author:

Yang Fan1ORCID,Taslim Mohammad E.1ORCID

Affiliation:

1. Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA

Abstract

Film cooling technology is a commonly used method for thermal protection of gas turbines’ hot sections. A new, shaped, film cooling hole is proposed in this study. The geometry is made of a straight-through cylindrical feed hole at an inclination angle of 30° followed by an expansion section. The expansion section is created by the rotation of the same circular hole on the inclination plane about an axis normal to that plane which passes through the center of the feed hole exit area. This shape was designed to decrease the deteriorating effects of kidney vortices by proper distribution of the coolant flow emerging from the hole exit area. Cases with four rotation angles (7°, 14°, 17.5°, and 21°) were studied both experimentally and numerically and for the blowing ratios of 0.5, 1, and 2.0. For comparisons, the commonly used 7°-7°-7° diffusion hole geometry was also tested under otherwise identical conditions. For data collection, the pressure-sensitive paint (PSP) technique was used to measure the film cooling effectiveness. Streamwise- and spanwise-averaged film effectiveness results were obtained to compare the performance of different geometries. The main conclusions were that the case of 21° rotation angle produced the highest film effectiveness and outperformed the 7°-7°-7° diffusion hole geometry.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Film Effectiveness Downstream the Trenches with Tilted Target Wall;International Journal of Rotating Machinery;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3