Dispersion and Intersection of Hydrothermal Plumes in the Manus Back-Arc Basin, Western Pacific

Author:

Zeng Zhigang1234ORCID,Wang Xiaoyuan12ORCID,Murton Bramley J.5,Qi Haiyan1,Lehrmann Berit5,Li Xiaohui1,Chen Zuxing1,Shu Yunchao6

Affiliation:

1. Seafloor Hydrothermal Activity Laboratory, CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China

5. National Oceanography Centre, European Way, Southampton SO14 3ZH, UK

6. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Abstract

The composition of hydrothermal plumes reflects the physical and chemical characteristics of seafloor hydrothermal fluids, which in turn reflects the host rock and subseafloor reaction conditions as well as the water column processes that act to alter the plumes as they disperse and age. Here, we show that the turbidity, current, pH value, dissolved Fe (dFe), and dissolved Mn (dMn) compositions of hydrothermal plumes can be used to understand the spatial distribution and source of hydrothermal systems in the submarine geological environment. Data were obtained from 18 hydrocast stations, among which the water column samples were collected at 8 stations during the MANUS cruise of R/V KEXUE in 2015. The results showed that the Satanic Mills plume and Fenway plume rose approximately 140 m and 220 m above the seafloor, respectively. In the Satanic Mills plume, dFe remained longer than dMn during lateral plume dispersal. There was a clear intersection of the Satanic Mills plume and Fenway plume between 1625 m and 1550 m in the PACMANUS hydrothermal field, and the varied dispersion trends of the mixed plumes were affected by current velocities at different depths. The physical and chemical properties of the seawater columns in the Manus Basin were affected by the input of high-Mn, high-Fe, and low-Mg vent fluids. The turbidity and dFe, dMn, and dissolved Mg concentrations in the sections of the plumes proximal to the Satanic Mills, Fenway, and Desmos vent sites were generally higher (turbidity, Mn, and Fe) and lower (Mg) than those in the sections of the plumes that were more distal from the vent sites. This implied that the plumes proximal to their vent fluid sources, which were interpreted to have relatively young ages, dispersed chemically over time, and their concentrations became more similar to those of the plumes that were more distal from their vent fluid sources.

Funder

Special Fund for the Taishan Scholar Program of Shandong Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3