Machine Learning-Based Prediction of Unconfined Compressive Strength of Sands Treated by Microbially-Induced Calcite Precipitation (MICP): A Gradient Boosting Approach and Correlation Analysis

Author:

Talamkhani Saeed1ORCID

Affiliation:

1. Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

The current study applies a soft-computing approach based on the gradient boosting method to predict the unconfined compressive strength (UCS) of sands treated with microbially-induced calcite precipitation (MICP). A 10-fold cross-validation method and hyperparameter tuning are performed to find the optimal architecture of the gradient boosting algorithm. A total of 402 data of unconfined compression tests performed on biocemented sands are utilized in this study. The dataset includes eight input parameters: median sand particle size, uniformity coefficient of sand, initial void ratio, calcium chloride concentration, urea concentration, urease activity, optical density of bacteria, and calcite content. The finding demonstrates that the gradient boosting method outperformed five commonly used machine learning algorithms (artificial neural networks, random forests, k-nearest neighbors, support vector regression, and decision trees) in predicting the UCS of biocemented sands. Using the gradient boosting, the predicted UCS has a strong correlation with the actual values (R2 = 0.95). Moreover, a series of correlation and feature importance analyses are carried out over the dataset. The relationships between unconfined compressive strength, calcite content, and initial void ratio are discussed within the article. Furthermore, some guidelines are provided for assessing the effect of environmental factors on the UCS of biocemented sands. For further study, the limitations of this study regarding the insufficiency of data for correlation and environmental modification are addressed.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3