Selenium Supplementation Improved Cardiac Functions by Suppressing DNMT2-Mediated GPX1 Promoter DNA Methylation in AGE-Induced Heart Failure

Author:

Zhu Huolan12ORCID,Wang Xiang23ORCID,Meng Xuyang23ORCID,Kong Yiya23ORCID,Li Yi2ORCID,Yang Chenguang2ORCID,Guo Ying2ORCID,Wang Xiqiang45ORCID,Yang Haini5ORCID,Liu Zhongwei45ORCID,Wang Fang23ORCID

Affiliation:

1. Department of Geriatrics, Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China

2. Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China

3. Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China

4. Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China

5. Cardiovascular Research Center, Shaanxi Provincial People’s Hospital, Xi’an, China

Abstract

Objective. Advanced glycation end products (AGEs) are featured metabolites associated with diabetic cardiomyopathy which is characterized by heart failure caused by myocyte apoptosis. Selenium was proved cardioprotective. This study was aimed at investigating the therapeutic effects and underlying mechanisms of selenium supplementation on AGE-induced heart failure. Methods. Rats and primary myocytes were exposed to AGEs. Selenium supplementation was administrated. Cardiac functions and myocyte apoptosis were evaluated. Oxidative stress was assessed by total antioxidant capacity (TAC), reactive oxygen species (ROS) generation, and GPX activity. Expression levels of DNA methyltransferases (DNMTs) and glutathione peroxidase 1 (GPX1) were evaluated. DNA methylation of the GPX1 promoter was analyzed. Results. AGE exposure elevated intracellular ROS generation, induced myocyte apoptosis, and impaired cardiac functions. AGE exposure increased DNMT1 and DNMT2 expression, leading to the reduction of GPX1 expression and activity in the heart. Selenium supplementation decreased DNMT2 expression, recovered GPX1 expression and activity, and alleviated intracellular ROS generation and myocyte apoptosis, resulting in cardiac function recovery. DNA methylation analysis in primary myocytes indicated that selenium supplementation or DNMT inhibitor AZA treatment reduced DNA methylation of the GPX1 gene promoter. Selenium supplementation and AZA administration showed synergic inhibitory effect on GPX1 gene promoter methylation. Conclusions. Selenium supplementation showed cardioprotective effects on AGE-induced heart failure by suppressing ROS-mediated myocyte apoptosis. Selenium supplementation suppressed ROS generation by increasing GPX1 expression via inhibiting DNMT2-induced GPX1 gene promoter DNA methylation in myocytes exposed to AGEs.

Funder

SPPH Scientific Research Support Projects

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3