Thermoelastic Damping Limited Quality Factor Enhancement and Energy Dissipation Analysis of Rectangular Plate Resonators Using Nonclassical Elasticity Theory

Author:

R. Resmi1ORCID,V. Suresh Babu2ORCID,M. R. Baiju3

Affiliation:

1. University of Kerala, LBS Institute of Technology for Women, Thiruvananthapuram 695012, Kerala, India

2. APJ Abdul Kalam Technological University, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 670644, India

3. University of Kerala, Kerala Public Service Commission, Thiruvananthapuram, Kerala 695004, India

Abstract

Among the different energy dissipation mechanisms, thermoelastic damping plays a vital role and needs to be alleviated in vibrating resonators to mitigate parameters by improving the thermoelastic damping limited quality factor, QTED. The maximum energy dissipation is also interrelated with the critical dimension h c of the plates, and by optimizing the dimensions, the peaking of energy dissipation can be diminished. As the size of the devices is scaled down, classical continuum theories become incompetent to explain the size-effect related mechanical nature at the micron and submicron levels, and, as a result, nonclassical continuum theories have been pioneered with the inception of internal length scale parameters. In this work, an analysis of isotropic rectangular microplates based on the Kirchhoff model and a higher order theory like Modified Couple Stress Theory is utilized to study size-dependent thermoelastic damping and its impact on the quality factor and critical dimensions. The Hamilton principle is adapted to derive the governing equations of motion, and the coupled heat conduction equation is employed to formulate the thermoelastic damping limited quality factor of the plates. Five different structural materials (PolySi, diamond, Si, GaAs, and SiC) are used for optimizing QTED and hc, which depends on two material performance index parameters: the thermoelastic damping index (TDI) and the material thermal diffusion length, l T . According to this work, the maximum QTED is attained for PolySi with the lowest TDI, and hcmax is obtained for Si with the maximum l T . The impacts of the dimensionless length-scale parameters (l/h), vibration modes, and boundary conditions (clamped-clamped and simply supported) on QTED and hc are also investigated. From the current analysis, QTED can be further enhanced by selecting higher vibration modes and clamped-clamped boundary conditions. QTED can be maximized by fixing the internal length scale parameter (l) and making the thickness of the beam equal to l. The analytical study is numerically simulated by using MATLAB 2015 software. Prior knowledge of QTED and hc will help designers to produce high-performance and low-loss resonators for the futuristic technological applications.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3