Influence of Multistage Target Temperature and Cyclic Loading/Unloading on the Permeability of Polypropylene Fiber Concrete

Author:

Cen Peishan1,Wei Erjian2ORCID,Tian Kunyun3ORCID

Affiliation:

1. School of Construction Engineering, Zhengzhou Shengda University, Zhengzhou, Henan, China

2. School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China

3. School of Resource and Security Engineering, Henan University of Engineering, Zhengzhou, Henan, China

Abstract

Due to the combined effect of temperature and cyclic loading and unloading, the gas permeability of polypropylene fiber reinforced concrete structures changes during service. However, the current gas permeability test of polypropylene fiber reinforced concrete is based on a single influencing factor or a single test condition (monotonic loading), and the test conditions are quite different from the actual working conditions of the structure. To explore the permeability of polypropylene fiber reinforced concrete under cyclic loading and unloading under the influence of temperature, based on the stress principle that the specimen does not have structural damage and according to the steady-state equation of Darcy’s law, the Cembureau method is adopted. The gas permeability of polypropylene fiber reinforced concrete under single loading and unloading and multistage cyclic loading and unloading at eight target temperatures is tested by the triaxial permeability test system. The results showed that (1) when the target temperature was 120°C < T ≤ 200°C and 200°C < T ≤ 280°C, the fiber experienced two stages of “softening, melting-cooling recovery” and “melting and absorption,” which caused damage to the matrix pore structure. The gas permeability at 200°C and 280°C was 246 times and 350 times that at 22°C, respectively. (2) The damage degree of the matrix strength structure increases during cyclic loading and unloading, and the permeability loss rate during cyclic loading and unloading is 1.24∼1.57 times that of single loading and unloading. (3) The high target temperature leads to pore structure damage of the matrix, which not only affects the permeability of the matrix but also affects the strength structure of the matrix. When the stress ratio R ≥ 0.37, the pore structure damage and the strength structure damage of the specimen are superimposed, resulting in the antipermeability effect of the specimen developing in the unfavorable direction. The test simulated the actual working conditions of polypropylene fiber reinforced concrete, providing a reference for building fire protection, seismic design or postdisaster evaluation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3