Key Feature Extraction Method of Electroencephalogram Signal by Independent Component Analysis for Athlete Selection and Training

Author:

Huang Zhongwei1,Cheng Lifen2,Liu Yang2ORCID

Affiliation:

1. School of Physical Education, Jiamusi University, Jiamusi 154000, China

2. School of Physical Education, Nanchang Normal University, Nanchang 330032, China

Abstract

Emotion is an important expression generated by human beings to external stimuli in the process of interaction with the external environment. It affects all aspects of our lives all the time. Accurate identification of human emotional states and further application in artificial intelligence can better improve and assist human life. Therefore, the research on emotion recognition has attracted the attention of many scholars in the field of artificial intelligence in recent years. Brain electrical signal conversion becomes critical, and it needs a brain electrical signal processing method to extract the effective signal to realize the human-computer interaction However, nonstationary nonlinear characteristics of EEG signals bring great challenge in characteristic signal extraction. At present, although there are many feature extraction methods, none of them can reflect the global feature of the signal. The following solutions are used to solve the above problems: (1) this paper proposed an ICA and sample entropy algorithm-based framework for feature extraction of EEG signals, which has not been applied for EEG and (2) simulation signals were used to verify the feasibility of this method, and experiments were carried out on two real-world data sets, to show the advantages of the new algorithm in feature extraction of EEG signals.

Funder

Education Department of Jiangxi Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BILMB: Design of a hybrid Bio inspired Incremental Learning-based model for analysing effects of Meditation on different Body-parts;2023 6th International Conference on Information Systems and Computer Networks (ISCON);2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3