Earthquake Response Spectra Analysis of Bridges considering Pounding at Bilateral Beam Ends Based on an Improved Precise Pounding Algorithm

Author:

Zhang Ruijie1,Yan Lei12ORCID,Yue Kefeng1,Yin Junhong3,An Kang2

Affiliation:

1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404100, China

3. School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China

Abstract

Asynchronous vibration was generated between the main bridge and approach spans or abutments due to differences in stiffness and mass during an earthquake, thus further leading to pounding at the bilateral beam ends. By taking a T-shaped rigid frame bridge as an example, the bilateral pounding model was abstracted, and the earthquake response spectra considering pounding at the bilateral beam ends were studied, including the maximum displacement spectrum, the acceleration dynamic coefficient spectrum, the pounding force response spectrum, and the response spectrum for the number of pounding events. An improved precise pounding algorithm was proposed to solve the dynamic equation of the bilateral pounding model. This algorithm is based on the precise integration method for solving the second-order dynamic differential equation and reduces the order thereof by introducing a new velocity vector and uses the series method to find the nonhomogeneous term. The system matrix is simpler, and the inversion of the system matrix can be avoided. On this basis, a multipoint earthquake-induced pounding response spectrum program was developed. A total of 18 seismic waves from Class II sites were selected, and the response spectra of 18 waves were analyzed using this new program. Furthermore, the effects of structural stiffness, mass, stiffness of contact element, pounding recovery coefficient, and peak ground acceleration (PGA) on the earthquake response spectrum were studied. Through the analysis of earthquake response spectra and a parametric study, the phenomenon of earthquake-induced pounding of bridges was clarified to the benefit of the analysis and engineering control of earthquake-induced pounding of bridges.

Funder

Chongqing Postdoctoral Special

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3