Optimization of Dynamic Obstacle Avoidance Path of Multirotor UAV Based on Ant Colony Algorithm

Author:

Yang Yuexin1ORCID,Chen Zhuoxun2

Affiliation:

1. Changzhou University, Changzhou 213164, China

2. George School, Newtown 18940, USA

Abstract

In this paper, the real-time path avoidance problem of multirotor UAV in the case of sudden obstacles in two-dimensional environment is studied. The principle, model, and application of ant colony algorithm are analyzed. On this basis, the adaptive dynamic window ant colony algorithm is proposed, and the adaptive dynamic window method is designed; the heuristic function of adding obstacle detection factors and the double pheromone update strategy are made to the ant colony algorithm, and the improved ant colony algorithm is used to replan the path within the dynamic window that can be automatically adjusted to achieve the purpose of obstacle avoidance. A real-time simulation experiment of path planning was conducted by constructing an environment map in MATLAB. The simulation results show that with the continuous increase of the number of sudden obstacles, the real-time replacement path of multirotor UAV also gradually increases, and when approaching the obstacles, the replacement path is more dense, indicating that the adaptive window ant colony algorithm can be applied to dynamic path replacement, and the multirotor UAV can realize dynamic obstacle avoidance path optimization under the condition of sudden obstacles in a short time.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference26 articles.

1. Mobile Robot Path Planning Based on Time Taboo Ant Colony Optimization in Dynamic Environment

2. Continuous interacting ant colony algorithm based on dense heterarchy

3. Optimization-Based Safety Analysis of Obstacle Avoidance Systems for Unmanned Aerial Vehicles

4. An improved ant colony algorithm based on adaptively adjusting pheromone;G. L. Qin;Information and Control,2002

5. Velocity obstacles-based collision avoidance feasible trajectory planning optimization algorithm for multiple UAV;Y. Zhang;Systems Engineering and Electronics,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3