Stabilization and Ecological Risk Evaluation of Heavy Metals in Farmland Soils by Addition of Attapulgite Modified with Phosphates

Author:

Duan Cuiqing123,Ren Jun124ORCID,Tao Ling124

Affiliation:

1. Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China

2. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

3. Gansu Academy of Social Sciences, Lanzhou 730070, China

4. Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou 730070, China

Abstract

Purpose. Attapulgite was modified by sodium dihydrogen phosphate, oxalic acid-activated phosphate rock powder, potassium dihydrogen phosphate, calcium superphosphate, ammonium dihydrogen phosphate, and fused calcium-magnesium phosphate and used in the remediation of Cd, Zn, and Ni. Materials and Methods. Attapulgite was modified by six kinds of phosphate (ratio: 1 : 2), and the improvement effect of passivation material on soil polluted by cadmium, zinc, and nickel was determined. CaCl2-extractable and toxicity characteristic leaching procedure- (TCLP-) extractable Cd, Zn, and Ni were measured in order to estimate the bioavailability and the stabilization efficiency. Pot experiment was conducted to study the enrichment and transport ability of Cd, Zn, and Ni in corn. The ecological risk and ecological toxicity of soil environment were evaluated by calculating SEm, ERIm, CRIm, and BUF. Results and Discussion. Compared with ATP, passivation materials AAPR, AMRP, ASSP, AMAP, and AFMP can improve the stability of CD, Zn, and Ni in soil, and AAPR has the best effect. Compared with CK treatments and ATP treatments, the concentrations of TCLP-extractable Cd decreased by 30.80% and 24.72%, respectively, the concentrations of TCLP-extractable Zn decreased by 15.50% and 11.18%, respectively, and the concentrations of TCLP-extractable Ni decreased by 31.34% and 23.20%, respectively. Compared with ATP treatments, CRI, BUF-Cd, BUF-Ni, and BUF-Zn decreased by 24.67%, 52.88%, 78.73%, and 41.18%, respectively, in the AAPR treatments. Conclusions. Phosphate-modified attapulgite can effectively improve the stability of heavy metals in soil and reduce the migration of heavy metals. In the soil polluted by Cd, Zn, and Ni, the passivation effect of AAPR is the best. Therefore, AAPR can be used as an economical, safe, and effective passivation material to improve Cd-, Zn-, and Ni-contaminated soil, which would have a high utilization value in field applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference40 articles.

1. Heavy metal concentrations differ along wetland-to-grassland soils: a case study in an ecological transition zone in Hulunbuir, Inner Mongolia

2. Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky

3. Technologies for the cobalt-contaminated soil remediation: a review;M. Jiang;The Science of the Total Environment,2022

4. Clays and clay minerals for pollution control;G. J. Churchman;Developments in Clay Science,2013

5. Passivation of simulated Pb-and Cd-contaminated soil by applying combined treatment of phosphate, humic acid, and fly ash;Q. Y. Zhao;Environmental Sciences,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effectiveness and potential mechanism of hydrothermal modification of attapulgite for cadmium passivation in soil;International Journal of Environmental Science and Technology;2023-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3