A New Approximate Method for Lightning-Radiated ELF/VLF Ground Wave Propagation over Intermediate Ranges

Author:

Hou Wenhao1ORCID,Zhang Qilin1ORCID,Zhang Jinbo1,Wang Lei2,Shen Yuan2

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

2. Yunnan Electric Power Test Institute (Group) Co., Ltd., Electric Power Research Institute, Kunming, China

Abstract

A new approximate method for lightning-radiated extremely low-frequency (ELF) and very low-frequency (VLF) ground wave propagation over intermediate ranges is presented in this paper. In our approximate method, the original field attenuation function is divided into two factors in frequency domain representing the propagation effect of the ground conductivity and Earth’s curvature, and both of them have clearer formulations and can more easily be calculated rather than solving a complex differential equation related to Airy functions. The comparison results show that our new approximate method can predict the lightning-radiated field peak value over the intermediate range with a satisfactory accuracy within maximum errors of 0.0%, −3.3%, and −8.7% for the earth conductivity of 4 S/m, 0.01 S/m, and 0.001 S/m, respectively. We also find that Earth’s curvature has much more effect on the field propagation at the intermediate ranges than the finite ground conductivity, and the lightning-radiated ELF/VLF electric field peak value (V/m) at the intermediate ranges yields a propagation distance d (km) dependence of d1.32.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3