Upregulation of Biomarker Limd1 Was Correlated with Immune Infiltration in Doxorubicin-Related Cardiotoxicity

Author:

Zhang Rui1ORCID,Hao Chunshu1ORCID,Ji Zhenjun1ORCID,Qu Yangyang1ORCID,Zuo Wenjie1ORCID,Yang Mingming1ORCID,Zuo Pengfei1ORCID,Carvalho Abdlay1ORCID,Ma Genshan1ORCID,Li Yongjun1ORCID

Affiliation:

1. Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan Road, Nanjing, Jiangsu 210000, China

Abstract

Doxorubicin is one of the most common antitumor drugs. However, cardiotoxicity’s side effect limits its clinical applicability. In the present study, Gene Expression Omnibus (GEO) datasets were applied to reanalyze differentially expressed genes (DEGs) and construct weighted correlation network analysis (WGCNA) modules of doxorubicin-induced cardiotoxicity in wild-type mice. Several other bioinformatics analyses were performed to pick out the hub gene, and then the correlation between the hub gene and immune infiltration was evaluated. In total, 120 DEGs were discovered in a mouse model of doxorubicin-induced cardiotoxicity, and PF-04217903, propranolol, azithromycin, etc. were found to be potential drugs against this pathological condition. Among all the DEGs, 14 were further screened out by WGCNA modules, of which Limd1 was upregulated and finally regarded as the hub gene after being validated in other GEO datasets. Limd1 was upregulated in the peripheral blood mononuclear cell (PBMC) of the rat model, and the area under curve (AUC) of the receiver operating characteristic curve (ROC) in diagnosing cardiotoxicity was 0.847. The GSEA and PPI networks revealed a potential immunocyte regulatory role of Limd1 in cardiotoxicity. The proportion of “dendritic cells activated” in the heart was significantly elevated, while “macrophage M1” and “monocytes” declined after in vivo doxorubicin application. Finally, Limd1 expression was significantly positively correlated with “dendritic cells activation’ and negatively correlated with “monocytes” and “macrophages M1’. In summary, our results suggested that limd1 is a valuable biomarker and a potential inflammation regulator in doxorubicin-induced cardiotoxicity.

Funder

Jiangsu Provincial Key Medical Discipline

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3