The Effect of Temperature on Dynamic Characteristics of Frozen Clay under Principal Stress Rotation

Author:

Zhang Bin-Long12ORCID,Wang Da-Yan1ORCID,Zhou Zhi-Wei1ORCID,Ma Wei1ORCID,Lei Le-Le3ORCID

Affiliation:

1. Northwest Institute of Eco-Environment and Resource, State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Science, Lanzhou 730000, China

2. University of Chinese Academy of Science, Beijing 100049, China

3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China

Abstract

The foundation soil is always subjected to complex stress, including continuous rotation of the principal stress caused by traffic and earthquake loads. To comprehend the dynamic characteristics of frozen clay under complex stress sate, including continuous rotation of the principal stress, this study investigates the effect of temperature on the dynamic characteristics of frozen clay under principal stress rotation using a frozen hollow cylinder apparatus (FHCA-300). The test results reveal that the cumulative plastic strain of frozen clay samples exponentially increases with the rising of temperature under principal stress rotation. The influence of temperature is more profound with a high cyclic stress ratio (CSR). A decrease in temperature can improve the stiffness of the frozen clay, reduces its energy dissipation, and enhances its ability to resist dynamic loading. However, the principal stress rotation phenomenon may aggravate the damage of frozen clay and increase the energy dissipation and reduces its ability to resist dynamic loading. Based on the experimental data, an empirical expression was proposed to describe the coupling influence of CSRs and temperature on the axial resilient modulus of frozen clay, which can predict the development of axial resilient modulus under different thermal-mechanical conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3