Effect of Dimple Depth-Diameter Ratio on the Flow and Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Regenerative Cooling Channel

Author:

Li Lihan1,Li Xin1,Qin Jiang1ORCID,Zhang Silong1,Bao Wen1

Affiliation:

1. Harbin Institute of Technology, Harbin 150001, China

Abstract

In order to extend the cooling capacity of thermal protection in various advanced propulsion systems, dimple as an effective heat transfer enhancement device with low-pressure loss has been proposed in regenerative cooling channels of a scramjet. In this paper, numerical simulation is conducted to investigate the effect of the dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel inside the cooling channel. The thermal performance factor is adopted to evaluate the local synthetically heat transfer. The results show that increasing the dimple depth-diameter ratio h / d p can significantly reduce wall temperature and enhance the heat transfer inside the cooling channel but simultaneously increase pressure loss. The reason is that when h / d p is rising, the recirculation zones inside dimples would be enlarged and the reattachment point is moving downstream, which enlarge both the high Nu area at rear edge of dimple and the low Nu area in dimple front. In addition, when fluid temperature is nearer the fluid pseudocritical temperature, local acceleration caused by dramatic fluid property change would reduce the increment of heat transfer and also reduce pressure loss. In this study, the optimal depth-diameter ratio of dimple in regenerative cooling channel of hydrocarbon fueled is 0.2.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3