Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups

Author:

Ayele Abate1ORCID,Godeto Yakob Godebo2ORCID

Affiliation:

1. Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

2. Department of Industrial Chemistry (Nanotechnology Centre of Excellence), College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3