Multiplicative Fault Estimation-Based Adaptive Sliding Mode Fault-Tolerant Control Design for Nonlinear Systems

Author:

Ben Brahim Ali1ORCID,Dhahri Slim1,Ben Hmida Fayçal1,Sellami Anis1

Affiliation:

1. Engineering Laboratory of Industrial Systems and Renewable Energies, National Higher School of Engineers of Tunis, Tunis University, Tunis, Tunisia

Abstract

This article deals with the sliding mode fault-tolerant control (FTC) problem for a nonlinear system described under Takagi-Sugeno (T-S) fuzzy representation. In particular, the nonlinear system is corrupted with multiplicative actuator faults, process faults, and uncertainties. We start by constructing the separated FTC design to ensure robust stability of the closed-loop nonlinear system. First, we propose to conceive an adaptive observer in order to estimate nonlinear system states, as well as robust multiplicative fault estimation. The novelty of the proposed approach is that the observer gains are obtained by solving the multiobjective linear matrix inequality (LMI) optimization problem. Second, an adaptive sliding mode controller is suggested to offer a solution to stabilize the closed-loop system despite the occurrence of real fault effects. Compared with the separated FTC, this paper provides an integrated sliding mode FTC in order to achieve an optimal robustness interaction between observer and controller models. Thus, in a single-step LMI formulation, sufficient conditions are developed with multiobjective optimization performances to guarantee the stability of the closed-loop system. At last, nonlinear simulation results are given to illustrate the effectiveness of the proposed FTC to treat multiplicative faults.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Actuator multiplicative and additive simultaneous faults estimation using a qLPV proportional integral unknown input observer;International Journal of Adaptive Control and Signal Processing;2024-06-06

2. Actuator Fault Tolerant Control Design for Time Delay Systems;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. Simultaneous Multiplicative and Additive Actuator Faults Estimation-Based Sliding Mode FTC for a Class of Uncertain Nonlinear System;Mathematical Problems in Engineering;2023-07-03

4. Fault Tolerant Control of Fuzzy Stochastic Distribution Systems With Packet Dropout and Time Delay;IEEE Transactions on Automation Science and Engineering;2023

5. Fault Classification Using Support Vectors for Unmanned Helicopters;Computational Methods and Data Engineering;2020-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3