Impact of Hyperparameters on Deep Learning Model for Customer Churn Prediction in Telecommunication Sector

Author:

Dalli Anouar1ORCID

Affiliation:

1. Ecole Nationale des Sciences Appliquées de Safi (ENSAS), Université Cadi Ayyad, Marrakesh, Morocco

Abstract

In this paper, in order to predict a customer churn in the telecommunication sector, we have analysed several published articles that had used machine learning (ML) techniques. Significant predictive performance had been seen by utilising deep learning techniques. However, we have seen a tremendous lack of empirically derived heuristic information where we had to influence the hyperparameters consequently. Here, we had demonstrated three experimental findings, where a Relu activation function was embedded and utilised successfully in the hidden layers of the deep network. We can also see that the output layer had the service ability of a sigmoid function, in which we had seen a significant performance of the neural network model and obviously it was improved. Furthermore, we had also seen that the model's performance was noticed to be even better, but it was only considered better though when the batch size in the model was taken less than the test dataset’s size, respectively. In terms of accuracy, the RemsProp optimizer beat out the other algorithms such as stochastic gradient descent (SGD). RemsProp was seen even better from the Adadelta algorithm, the Adam algorithm, the AdaGrad algorithm, and AdaMax algorithm as well.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference45 articles.

1. Modeling churn behavior of bank customers using predictive data mining techniques;M. Chandar;Proceedings of International Conference on Soft Computing Techniques and Engineering Application,2006

2. A Survey on Churn Analysis in Various Business Domains

3. A Survey on data mining techniques in customer churn analysis for telecom industry;M. Almana;International Journal of Engineering Research in Africa,2014

4. A review and analysis of churn prediction methods for customer retention in telecom industries

5. Telecommunication subscribers' churn prediction model using machine learning

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3