Recovery of the 20 Hz Rebound to Tactile and Proprioceptive Stimulation after Stroke

Author:

Parkkonen Eeva123ORCID,Laaksonen Kristina123,Parkkonen Lauri12ORCID,Forss Nina123

Affiliation:

1. Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland

2. Aalto Neuroimaging MEG-Core, Aalto University School of Science, Espoo, Finland

3. Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland

Abstract

Sensorimotor integration is closely linked to changes in motor-cortical excitability, observable in the modulation of the 20 Hz rhythm. After somatosensory stimulation, the rhythm transiently increases as a rebound that reflects motor-cortex inhibition. Stroke-induced alterations in afferent input likely affect motor-cortex excitability and motor recovery. To study the role of somatosensory afferents in motor-cortex excitability after stroke, we employed magnetoencephalographic recordings (MEG) at 1–7 days, one month, and 12 months in 23 patients with stroke in the middle cerebral artery territory and 22 healthy controls. The modulation of the 20 Hz motor-cortical rhythm was evaluated to two different somatosensory stimuli, tactile stimulation, and passive movement of the index fingers. The rebound strengths to both stimuli were diminished in the acute phase compared to the controls and increased significantly during the first month after stroke. However, only the rebound amplitudes to tactile stimuli fully recovered within the follow-up period. The rebound strengths in the affected hemisphere to both stimuli correlated strongly with the clinical scores across the follow-up. The results show that changes in the 20 Hz rebound to both stimuli behave similarly and occur predominantly during the first month. The 20 Hz rebound is a potential marker for predicting motor recovery after stroke.

Funder

SalWe Research Program for Mind and Body and Seamless Patient Care

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3