Affiliation:
1. GSAIM, Chung-Ang University, Seoul, Republic of Korea
Abstract
We present a modified Adaboost algorithm in face detection, which aims at an accurate algorithm to reduce false-positive detection rates. We built a new Adaboost weighting system that considers the total error of weak classifiers and classification probability. The probability was determined by computing both positive and negative classification errors for each weak classifier. The new weighting system gives higher weights to weak classifiers with the best positive classifications, which reduces false positives during detection. Experimental results reveal that the original Adaboost and the proposed method have comparable face detection rate performances, and the false-positive results were reduced almost four times using the proposed method.
Funder
Ministry of Education, Science and Technology
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献