Load Balancing Algorithms for Hadoop Cluster in Unbalanced Environment

Author:

Fu Weiyu12ORCID,Wang Lixia34ORCID

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. Jiangsu Vocational College of Finance and Economics, Huai’an, Jiangsu 223003, China

3. School of Management, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

4. School of Business Administration, Henan Polytechnic University, Jiaozuo, Henan 454003, China

Abstract

Considering that in the process of job scheduling, the cluster load should be prebalanced rather than remedied when the load is seriously unbalanced; therefore, in this paper, the task scheduling flow of the Hadoop cluster is analyzed deeply. On the Hadoop platform, a self-dividing algorithm is proposed for load balancing. An intelligent optimization algorithm is used to solve load balance. A dynamic feedback load balancing scheduling method is proposed from the point of view of task scheduling. In order to solve the shortcoming of the fair scheduling algorithm, this paper proposes two ways to improve the resource utilization and overall performance of Hadoop. When the mapping task is completed and the tasks to be reduced are assigned, the task assignment is based on the performance of the nodes to be reduced. It gives full play to the advantages of the ant colony algorithm and the hive colony algorithm so that the fusion algorithm can better deal with load balance. Then, three existing scheduling algorithms are introduced in detail: single queue scheduling, capacity scheduling, and fair scheduling. On this basis, an improved task scheduling strategy based on genetic algorithm is proposed to allocate and execute application tasks to reduce task completion time. The experiment verifies the effectiveness of the algorithm. The LBNP algorithm greatly improves the efficiency of reducing task execution and job execution. The delay capacity scheduling algorithm can ensure that most tasks can achieve localization scheduling, improve resource utilization, improve load balance, and speed up job completion time.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3