Correlation of Unconfined Compressive Strength (UCS) with Compaction Characteristics of Soils in Burayu Town

Author:

Kormu Solomon1,Sorsa Alemineh2,Amena Shelema2ORCID

Affiliation:

1. Department of Civil Engineering, Ambo University, Woliso Campus, Ambo, Oromia, Ethiopia

2. Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Oromia, Ethiopia

Abstract

The unconfined compressive strength is the most widely used parameter to measure the strength of the subgrade or foundation soil for cohesive soils. Due to its time-consuming and cost-effective nature, most of the time-correlation equations have been used to correlate unconfined compressive strength with compaction parameters and soil index properties. The current study was conducted in Burayu town where fifty soil samples were collected and experimental geotechnical soil tests were carried out based on the American Society for Testing and Materials (ASTM) standards. The correlation and regression analyses were done using the experimental results obtained for unconfined compressive strength (UCS) and compaction characteristics. The regression analysis resulted in a fair coefficient of correlation of 0.61 and 0.78 for single linear regression of UCS with maximum dry density (MDD) and optimum moisture content (OMC), respectively, while R2 = 0.83 for multiple linear regression analysis of UCS with MDD and OMC. After further emphasis, the equation developed using multiple linear regression (UCS = −3105 + 1625 MDD + 40.9 OMC, R2 = 0.83) which was chosen as a prediction equation. After validation of the established model using control tests, the statistical regression analysis shows that the correlation is 97% accurate in the UCS determination for multiple regression analysis. This implies that the established model could be used to predict the UCS in the study area.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference27 articles.

1. Introduction to geotechnical engineering

2. Relationship between soil cohesion and shear strength

3. Geotechnical engineering: principles and practices of soil mechanics and foundation engineering;V. N. Murthy,2002

4. Foundation analysis and design fifth edition;V. N. Murthy,2013

5. Influence of water content on the shear strength parameters of clayey soil in relation to stability analysis of a hillside in Brno region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3