Rotating Machinery Fault Diagnosis Based on Adaptive Vibration Signal Processing under Safety Environment Conditions

Author:

Zhen Jingran1ORCID

Affiliation:

1. School of Mechanical and Electrical Vehicle Engineering, Zhengzhou Institute of Technology, Henan, Zhengzhou 450044, China

Abstract

At present, the degree of industrialization in China is deepening, and various types of production equipment appear. However, during the startup and operation of mechanical equipment, fracture and wear will occur due to various factors. Therefore, once the mechanical equipment fails, it must be diagnosed as soon as possible to avoid serious economic losses and casualties. Rotating machinery is an important power device, so it is necessary to regularly detect and monitor equipment signals to avoid the consequences of wrong control methods. In this study, the fault diagnosis of rotating machine based on adaptive vibration signal processing is studied under the safe environmental conditions. The fault diagnosis process of rotating machinery is to first collect vibration signals, then process signal noise reduction, and then extract fault characteristic signals to further identify and classify fault status and diagnose fault degree. This study briefly introduces several rotating machinery vibration signal processing methods and identifies the fault state of the rotating machine based on the high-order cumulant. By building a DDS fault diagnosis test bench, the chaotic particle swarm parameter optimization algorithm is used to calculate the accurate stochastic resonance parameters. After noise processing, the high-frequency part is significantly reduced. The results show that, after stochastic resonance wavelet decomposition and denoising processing, the number of intrinsic functions can be significantly reduced, the fault frequency can be increased, the high-frequency noise can be reduced, and the fault analysis accuracy can be improved. We identify the fault state of rotating machinery based on the high-order cumulant, train the four states of the bearing, and compare the four types of faults, no fault, inner ring fault, rolling element fault, and outer ring fault through the comparison of the actual test set and the predicted test set. It is concluded that the rotating machinery fault belongs to the rolling element fault and the identification accuracy rate is 95%. Finally, based on the LMD morphological filtering, the rotating machinery fault diagnosis is carried out, and the feature extraction is carried out based on the LMD algorithm to decompose the bearing fault signal. Finally, the result after the morphological filtering and LMD decomposition and extraction can avoid noise interference.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3