Structural, Morphological, and LPG Sensing Properties of Al-Doped ZnO Thin Film Prepared by SILAR

Author:

Mondal Shampa1,Bhattacharya Shatabda1,Mitra P.1

Affiliation:

1. Department of Physics, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104, India

Abstract

Undoped and aluminum doped zinc oxide (AZO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) technique from ammonium zincate complex. The thin films are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their structural and morphological studies. Both undoped andAl-doped film show strong preferred c-axis orientation. The texture coefficient (TC) of the film along (002) direction increases due to Al incorporation. SEM micrograph shows round shaped particles for pure ZnO. However AZO films show particles with off spherical shape and compact interconnected grains. Sensitivity of the film in presence of 80% LEL (lower explosive limit) of LPG increases with temperature and is maximum at 325°C. Significantly high sensitivity of 87% with reasonably fast response was observed for 1%Al-doped ZnO (AZO) film in presence of 1.6 vol% LPG at 325°C.

Funder

Council of Scientific and Industrial Research

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3