Theoretical Design and Characteristics Analysis of a Quasi-Zero Stiffness Isolator Using a Disk Spring as Negative Stiffness Element

Author:

Meng Lingshuai1,Sun Jinggong1,Wu Wenjuan1

Affiliation:

1. Institute of Medical Equipment, Academy of Military Medical Sciences, 106 Wandong Road, Hedong District, Tianjin 300161, China

Abstract

This paper presents a novel quasi-zero stiffness (QZS) isolator designed by combining a disk spring with a vertical linear spring. The static characteristics of the disk spring and the QZS isolator are investigated. The optimal combination of the configurative parameters is derived to achieve a wide displacement range around the equilibrium position in which the stiffness has a low value and changes slightly. By considering the overloaded or underloaded conditions, the dynamic equations are established for both force and displacement excitations. The frequency response curves (FRCs) are obtained by using the harmonic balance method (HBM) and confirmed by the numerical simulation. The stability of the steady-state solution is analyzed by applying Floquet theory. The force, absolute displacement, and acceleration transmissibility are defined to evaluate the isolation performance. Effects of the offset displacement, excitation amplitude, and damping ratio on the QZS isolator and the equivalent system (ELS) are studied. The results demonstrate that the QZS isolator for overloaded or underloaded can exhibit different stiffness characteristics with changing excitation amplitude. If loaded with an appropriate mass, excited by not too large amplitude, and owned a larger damper, the QZS isolator can possess better isolation performance than its ELS in low frequency range.

Funder

National Science and Technology Major Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3