Prediction Model for Brake-Drum Temperature of Large Trucks on Consecutive Mountain Downgrade Routes Based on Energy Conservation Law

Author:

Yan Menghua1,Xu Jinliang1ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

Abstract

Excessively high brake temperature may lead to brake fading and failure, resulting in truck runaway down a graded descent. The accurate prediction of the changes in the brake-drum temperature on downgrades can provide theoretical guidance for truck accident countermeasures, such as determining the maximum safe speeds and the locations of truck escape ramps. By analyzing truck accident mechanisms during graded descents and selecting the initial brake-drum temperature, downgrade percentage and length, and the truck weight and speed as independent variables, with the brake-drum temperature as a dependent variable, the downgrade process of a truck can be divided into two stages: speed control at the grade section and emergency braking at the grade end. The energy conversion process in the forms of brake and nonbrake forces in the two stages are analyzed, based on the energy conservation law. A prediction model for the brake-drum temperature of large trucks on consecutive mountain downgrade routes is established, using the heat quantity formula. The model’s numerical calculation explicitly demonstrates the effect of all the variables. The brake-drum temperature is positively related to the truck weight, and the percentage and length of the downgrade. The temperature increase in the control speed phase is negatively related to the truck speed, whereas that in the emergency braking phase is positively related. The relationship curves between the variables show that the brake-drum temperature does not change significantly with the truck speed. However, the brake-drum temperatures, under different truck weights, downgrade lengths, and percentages, at the same speed, differ considerably. Compared to the existing empirical fitting model based on specific test data, the proposed model clearly shows the effects of main variables. The proposed model can be used for determining the safe truck speeds and locations of truck escape ramps to provide guidance for drivers and builders.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference18 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3