Affiliation:
1. Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Shijiazhuang, China
2. Hebei Normal University, Shijiazhuang, China
Abstract
The trend of low breastfeeding rates increases the demand for infant milk formula (IMF) worldwide, but the use of IMF may be one of the causes of bacterial infections in infants. Complete sterility in the whole production line of IMF cannot be guaranteed; therefore, it is necessary to closely monitor the microbial content in the process. In the present study, an IMF powder production line based on the wet mixing process was sampled at 27 suspicious points in spring and summer to analyze the bacterial diversity by high-throughput sequencing. We found that 70 and 69 different bacterial phyla were present in spring and summer samples, respectively, with Proteobacteria and Firmicutes being the dominant phyla (>80% relative abundance). Moreover, 13 dominant genera each were present in spring (e. g., Pseudomonas and Lactococcus) and summer (e. g., Pseudomonas, Bacillus, and Streptococcus). Samples associated with workers showed higher bacterial species diversity (Shannon index) and richness (Chao1 index) in summer than in spring. The bacterial community composition showed high similarity between liquid milk after pasteurization and concentrated milk after evaporation. The potential bacterial pathogens were identified as Pseudomonas aeruginosa in spring and Acinetobacter baumannii in summer. Through retrospective analysis of the two opportunistic pathogens identified, it was found that the workshop environment was the potential contamination point in spring, whereas the auxiliary ingredients were the potential source of contamination in summer. The results highlight the effect of season on bacterial diversity associated with the production process of IMF and are useful in controlling the microbial quality and safety of infant dairy products.
Funder
Administration of Market Supervision
Subject
Safety, Risk, Reliability and Quality,Food Science