Defect Size Evaluation of Cylindrical Roller Bearings with Compound Faults on the Inner and Outer Races

Author:

Chen Lihai12ORCID,Tan Ao1ORCID,Yang Lixiu1ORCID,Pang Xiaoxu13ORCID,Qiu Ming13ORCID

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. AECC Harbin Bearing Co. Ltd, Harbin 150000, China

3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Faults in cylindrical roller bearings are one of the main contributors to major faults in rotating machinery. The development of bearing fault diagnosis technologies is key to measuring the performance, status, and risk of failure of rolling-element bearings and has attracted extensive attention from industry and academia. When faults arise, they are often not a single fault but a compound fault, such as the simultaneous failure of the inner and outer races. In this paper, a method for evaluating the size of compound faults on the inner and outer races of cylindrical roller bearings is proposed. The dynamic modeling method developed by Gupta is employed to create a dynamic model for compound faults on the inner and outer rings of rolling bearings that allows the time domain signal of the vibration responses of compound faults on the inner and outer races to be obtained. Adopting an improved continuous harmonic wavelet packet decomposition method for the decomposition and reconstruction of the compound fault signal, we arrive at the corresponding single-point fault signal. The relationship between defect size and key metrics of the vibration, such as root mean square acceleration (RMS), peak, crest factor (CF), kurtosis, and level crossing rate (LCR), is investigated. The results show that there is a strong linear correlation between LCR and defect size, which can be used to evaluate the size of the defect. Experimental data for cylindrical roller bearings with compound faults on the inner and outer races are examined to verify the results.

Funder

National Science Funds of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3