Improved Feature Pyramid Convolutional Neural Network for Effective Recognition of Music Scores

Author:

Li Lei1ORCID

Affiliation:

1. College of Music, Handan University, Handan 056005, Hebei Province, China

Abstract

Music written by composers and performed by multidimensional instruments is an art form that reflects real-life emotions. Historically, people disseminated music primarily through sheet music recording and oral transmission. Among them, recording music in sheet music form was a great musical invention. It became the carrier of music communication and inheritance, as well as a record of humanity's magnificent music culture. The advent of digital technology solves the problem of difficult musical score storage and distribution. However, there are many drawbacks to using data in image format, and extracting music score information in editable form from image data is currently a challenge. An improved convolutional neural network for musical score recognition is proposed in this paper. Because the traditional convolutional neural network SEGNET misclassifies some pixels, this paper employs the feature pyramid structure. Use additional branch paths to fuse shallow image details, shallow texture features that are beneficial to small objects, and high-level features of global information, enrich the multi-scale semantic information of the model, and alleviate the problem of the lack of multiscale semantic information in the model. Poor recognition performance is caused by semantic information. By comparing the recognition effects of other models, the experimental results show that the proposed musical score recognition model has a higher recognition accuracy and a stronger generalization performance. The improved generalization performance allows the musical score recognition method to be applied to more types of musical score recognition scenarios, and such a recognition model has more practical value.

Funder

Handan University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference24 articles.

1. Optical music recognition: the case study of pattern recognition;W. Homenda

2. Optical recognition of music symbols

3. Staff-line detection and removal using a convolutional neural network

4. A deep approach for handwritten musical symbols recognition[C]. Teres ina, piaui state, Brazil;R. M. Pinheiro Pereira;ACM,2016

5. A new optical music recognition system based on combined neural network

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3