Comparing Maintainability Index, SIG Method, and SQALE for Technical Debt Identification

Author:

Strečanský Peter1,Chren Stanislav1,Rossi Bruno1ORCID

Affiliation:

1. Masaryk University, Brno, Czech Republic

Abstract

There are many definitions of software Technical Debt (TD) that were proposed over time. While many techniques to measure TD emerged in recent times, there is still not a clear understanding about how different techniques compare when applied to software projects. The goal of this paper is to shed some light on this aspect, by comparing three techniques about TD identification that were proposed over time: (i) the Maintainability Index (MI), (ii) SIG TD models, and (iii) SQALE analysis. Considering 20 open source Python libraries, we compare the TD measurements time series in terms of trends and evolution according to different sets of releases (major, minor, and micro), to see if the perception of practitioners about TD evolution could be impacted. While all methods report generally growing trends of TD over time, there are different patterns. SQALE reports more periods of steady states compared to MI and SIG TD. MI is the method that reports more repayments of TD compared to the other methods. SIG TD and MI are the models that show more similarity in the way TD evolves, while SQALE and MI are less similar. The implications are that each method gives slightly a different perception about TD evolution.

Funder

ERDF/ESF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence”

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3