Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

Author:

Lü Hai-Bing12,Xu Shi-Zhen13,Wang Hai-Jun1,Yuan Xiao-Dong1,Zhao Chao2ORCID,Fu Y. Q.2

Affiliation:

1. Research Center of Laser Fusion, China Academy of Engineering Physics (CAEP), P.O. Box 919-988-5, Mianyang 621900, China

2. Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland, Paisley PA1 2BE, UK

3. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

Abstract

Evolution of oxygen deficiency centers (ODCs) on a fused silica surface irradiated using a 355 nm ultraviolet (UV) laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

Funder

Carnegie Trust Funding

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3