Research on the Influence of External Parameters of Fan-Type Nozzle on Water Jet Performance

Author:

Kou Baofu1ORCID,Huo Pengliang1,Hou Xiaohua2

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. Vocational Education Center of Yangquan Coal Group, Yangquan, Shanxi 045000, China

Abstract

At present, high-pressure water jet technology occupies a very important position in the automobile washing industry. Some automatic washers cannot meet the washing requirements in the washing process due to unreasonable arrangement of nozzles on their spray rods. Based on the theory of computational fluid dynamics (CFD), the internal and external flow field model of the nozzle are established in this paper. Fluent is used to simulate and analyze the flow field, and the external parameters of the nozzle on the side spray bar of the automatic automobile washer are optimized. The simulation results show that after the nozzle and the normal line of the automobile surface are inclined at a certain angle, the target surface is affected not only by normal striking force but also by tangential pushing force, which makes stains easier to remove. The washing effect is the best when the nozzle is inclined 30° to the normal line of the automobile surface. Increasing the nozzle inlet pressure will increase the dynamic pressure on the automobile surface, but the increase of dynamic pressure will decrease after increasing to a certain pressure. The inlet pressure has little effect on the area covered by water jet. The reasonable matching results of jet angle, nozzle spacing, and nozzle distance from the automobile surface (target distance) obtained by numerical simulation can not only make the automobile surface completely covered and cleaned but also ensure less jet interference and no waste of water from adjacent nozzles. The above research conclusions can provide a basic theoretical basis for the optimal design of automatic automobile washing.

Funder

Key R&D Projects of Shanxi Province (International Scientific and Technological Cooperation), China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3