Optimal Learning Behavior Prediction System Based on Cognitive Style Using Adaptive Optimization-Based Neural Network

Author:

Aldabbagh Ghada1ORCID,Alghazzawi Daniyal M.1ORCID,Hasan Syed Hamid1,Alhaddad Mohammed1ORCID,Malibari Areej1ORCID,Cheng Li2ORCID

Affiliation:

1. Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box. 80221, Jeddah-21589, Saudi Arabia

2. Xinjiang Technical Institute of Physics & Chemistry Chinese Academy of Sciences, Ürümqi, China

Abstract

Widespread development of system software, the process of learning, and the excellence in profession of teaching are the formidable challenges faced by the learning behavior prediction system. The learning styles of teachers have different kinds of content designs to enhance their learning. In this learning environment, teachers can work together with the students, but the learning materials are designed by the teachers. The cognitive style deals with mental activities such as learning, remembering, thinking, and the usage of language. Therefore, being motivated by the problems mentioned above, this paper proposes the concept of adaptive optimization-based neural network (AONN). The learning behavior and browsing behavior features are extracted and incorporated into the input of artificial neural network (ANN). Hence, in this paper, the neural network weights are optimized with the use of grey wolf optimizer (GWO) algorithm. The output operation of e-learning with teaching equipment is chosen based on the cognitive style predicted by AONN. In experimental section, the measures of accuracy, sensitivity, specificity, time (sec), and memory (bytes) are carried out. Each of the measure is compared with the proposed AONN and existing fuzzy logic methodologies. Ultimately, the proposed AONN method produces higher accuracy, specificity, and sensitivity results. The results demonstrate that the algorithm proposed in this study can automatically learn network structures competitively, unlike those achieved for neural networks through standard approaches.

Funder

King Abdulaziz City for Science and Technology

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3