Design of System-of-System Acquisition Analysis Using Machine Learning

Author:

Alshammari Fahad H.1ORCID

Affiliation:

1. College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia

Abstract

A system of system’s ability to function is derived from the integration of systems from different sources. An SOS’s systems serve two purposes: first, to accomplish their own specific aims, and second, to provide resources to the SOS as a whole. In the last few decades, machine learning and data analytics have been widely used in system design and acquisitions. Every organisation that acquires a sophisticated system employs some type of data analytics to evaluate the system’s independent objectives, which is universally accepted. Data analytics and decision-making regarding the independent system is rarely shared across SOS stakeholders, even though the systems contribute to and benefit from the larger SOS. The goal of this research is to determine how the exchange of data sets and the corresponding analytics by SOS stakeholders can improve SOS capacity. Predicting SOS capabilities by exchanging relevant data sets and prescribing information connections between systems, we propose to use machine learning techniques. This article serves as an intermediate analysis of the above research work and aims to estimate the benefit of information sharing among the SOS stakeholders. In this research, we have applied different machine learning models to the IBM HR analytics data set to determine the corresponding analytics by SOS stakeholders that can improve SOS capacity. We propose using machine learning techniques to forecast SOS capabilities through the sharing of relevant data sets, and we prescribe the information linkages across systems to make this possible. This paper provides an update on the progress being made toward the aforementioned research project, and its primary focus is on developing a method to put a dollar amount on the benefits of information sharing among the many parties involved in the SOS.

Funder

Shaqra University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3