Diagenetic Fluid and Its Impact on Sandstone Reservoirs in the Southern Boxing Sag, Dongying Depression, Bohai Bay Basin, China

Author:

Shen Zhenhuan1ORCID,Ruan Zhuang1ORCID,Yu Bingsong1ORCID,Han Shujun1,Bai Chenyang2,Chang Qiuhong1,An Tianxia3

Affiliation:

1. School of Geosciences and Resources, China University of Geosciences, Beijing 100083, China

2. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China

3. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, China

Abstract

Diagenesis typically exerts a crucial impact on the formation of high-quality sandstone reservoirs in the Eocene Shahejie Formation, Dongying Depression. To better understand the formation process of petrophysical properties, this research conducts petrographic and geochemical analyses to investigate the nature of diagenetic fluids. Petrographic observations suggest that the dominant cements are carbonate, authigenic quartz, and clay minerals, accompanied with the dissolution of feldspar and calcite. The homogenization temperature of aqueous inclusions in quartz overgrowth usually exceeds 90°C corresponding to the maturity of organic matter. Quartz overgrowths contain higher amounts of CaO and Al2O3 than detrital quartz. This indicates that the siliceous fluid mainly originates from the dissolution of feldspar. Moreover, the conversion of clay minerals also provides trace amounts of silica into pore water during the burial process. Carbonate cements consist of early-stage calcite as well as late-stage Fe-calcite and ankerite. Calcite with relatively higher MnO proportions shows yellow luminescence and dissolution signs. Fe-calcite and ankerite cements have a higher homogenization temperature than that of quartz overgrowth and mainly concentrate in FeO and MgO as well as contain a small amount of Na+, K+, and Sr2+. The rare earth element (REE) pattern of bulk mudstone and carbonate cements as well as C–O isotopic evidences indicate that the diagenetic fluids of carbonate cementation are primarily controlled by the adjacent mudstone, whereas mineral dissolution and altered clay minerals in sandstone provide additional cations for the local reprecipitation of late-stage carbonate. Therefore, diagenetic fluids within sandstone reservoirs are typically subject to alkaline–acid–alkaline conditions and are influenced by internal sources in a closed system. Compaction significantly reduces the pore space of sandstone reservoirs in the Boxing Sag. Carbonate cementation further increases the complexity of pore structure and obeys the principle of mass balance.

Funder

Important Science & Technology Specific Projects of Sinopec

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3