Investigation of the Thermo-Mechanical Properties of Blend Films Based on Hemicelluloses and Cellulose

Author:

Gao Hui1,Rao Jun1,Guan Ying1ORCID,Li Wen-qi1,Zhang Mao-chao1,Shu Ting1,Lv Zi-wen1

Affiliation:

1. Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China

Abstract

This study presents an effective and convenient approach to prepare blend films with enhanced mechanical and thermodynamic properties by incorporation of carboxymethyl cellulose (CMC) into quaternized hemicelluloses (QH). The structures and properties of films were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile testing, respectively. From the SEM pictures, tight, homogeneous, and smooth surfaces of films were obtained. In addition, the transparencies of the blend films were increased with the increasing of CMC content. The results of mechanical properties indicated that the blend film prepared from QH and CMC (1 : 2 m/m) had a tensile strength of 65.2 MPa. It suggested that the addition of CMC was contributed to mechanical properties by strong electrostatic interactions and the enhanced hydrogen bondings with QH. These results provide insights into the understanding of the structural relationships of bioblend films in coating and packaging application.

Funder

Anhui Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3