Affiliation:
1. Department of Electrical Engineering, National Institute of Technology, Raipur 492010, India
Abstract
This paper analyses two different approaches of fault distance location in a double circuit transmission lines, using artificial neural networks. The single and modular artificial neural networks were developed for determining the fault distance location under varying types of faults in both the circuits. The proposed method uses the voltages and currents signals available at only the local end of the line. The model of the example power system is developed using Matlab/Simulink software. Effects of variations in power system parameters, for example, fault inception angle, CT saturation, source strength, its X/R ratios, fault resistance, fault type and distance to fault have been investigated extensively on the performance of the neural network based protection scheme (for all ten faults in both the circuits). Additionally, the effects of network changes: namely, double circuit operation and single circuit operation, have also been considered. Thus, the present work considers the entire range of possible operating conditions, which has not been reported earlier. The comparative results of single and modular neural network indicate that the modular approach gives correct fault location with better accuracy. It is adaptive to variation in power system parameters, network changes and works successfully under a variety of operating conditions.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献