Online Education Satisfaction Assessment Based on Machine Learning Model in Wireless Network Environment

Author:

Qin Jing1ORCID

Affiliation:

1. Criminal Investigation Police University of China, Shenyang, 110854 Liaoning, China

Abstract

With the development of wireless network technology, the transformation of educational concepts, the upgrading of users’ educational needs, and the transformation of lifestyles, online education has made great strides forward. However, due to the rapid growth of online education in my country, many regulatory systems have not kept pace with the development of online education, resulting in low user experience and satisfaction with online education. The establishment of a user satisfaction model is beneficial for attracting attention and thinking about research in the field of online education service quality, assisting enterprises in recognizing the specific impact of various factors in services, accelerating service quality improvement, and assisting in the formulation of industry norms and improving enterprise competitiveness, all of which help students acquire knowledge more easily. In the era of big data, traditional satisfaction evaluation methods have many drawbacks, so more and more machine learning methods are applied to satisfaction evaluation models. This paper takes the research of machine learning algorithm as the core to carry out the research work, uses the cost-sensitive idea to improve the decision tree, considers the cost of different types of classification errors, and uses the random forest principle to integrate the generated decision tree, thereby improving the accuracy of the model. The model has better stability, and the validity of the model is verified by experiments. For a follow-up in-depth investigation of online education satisfaction rating technology, the linked work of this paper has certain reference and reference value.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Online Education Satisfaction Assessment Based on Machine Learning Model in Wireless Network Environment;Computational and Mathematical Methods in Medicine;2023-10-18

2. Machine Learning Methods for Online Education Case;2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3