Analyzing the Role of Emotional Intelligence on the Performance of Small and Medium Enterprises (SMEs) Using AI-Based Convolutional Neural Networks (CNNs)

Author:

Serbaya Suhail H.1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Human emotion detection is necessary for social interaction and plays an important role in our daily lives. Artificial intelligence research is rising, focusing on automated emotion detection. The capability to identify the emotion, which is considered one of the traits of emotional intelligence, is a component of human intelligence. Although the study is limited dependent on facial expressions or voice is flourishing, it is identifying emotions via body movements, a less researched issue. To attain emotional intelligence, this study suggests a deep learning approach. Here initially the video can be converted into image frames after the converted image frames can be preprocessed using the Glitter bandpass butter worth filter and contrast stretch histogram equalization. Then from the enhanced image, the features can be clustered using the hybrid Gaussian BIRCH algorithm. Then the specialized features are retrieved from the body of human gestures using the AdaDelta bacteria foraging optimization algorithm, and the selected features are fed to a supervised Kernel Boosting LENET deep-learning algorithm. The experiment is conducted using Geneva multimodal emotion portrayals (GEMEPs) corpus data set. This data set includes, human body gestures portraying the archetypes of five emotions, such as anger, fear, joy, pride, and sad. In these emotion detection techniques, the suggested Kernel Boosting LENET classifier achieves 98.5% accuracy, 94% precision, 95% sensitivity, and F-Score 93% outperformed better than the other existing classifiers. As a result, emotional acknowledgment may help small and medium enterprises (SMEs) to improve their performance and entrepreneurial orientation. The correlation coefficient of 188 and the significance coefficient of 0.00 show that emotional intelligence and SMEs performance have a significant and positive association.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference42 articles.

1. Recognition of learning-centered emotions using a convolutional neural network

2. Automated facial expression recognition using deep learning techniques: an overview;S. Meriem;International Journal of Informatics and Applied Mathematics,2020

3. Emotion Recognition From Facial Expressions and Its Control Using Fuzzy Logic

4. Human Facial Expression Recognition with Convolution Neural Networks

5. Characterizing Types of Convolution in Deep Convolutional Recurrent Neural Networks for Robust Speech Emotion Recognition;C. W. Huang,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3