miR-302a-3p Promotes Radiotherapy Sensitivity of Hepatocellular Carcinoma by Regulating Cell Cycle via MCL1

Author:

Yang Zifeng1ORCID,Zhang Menglong2ORCID,Zhang Jian3ORCID,Chu Cunkun4ORCID,Hu Bijuan5ORCID,Huang Liyin5ORCID

Affiliation:

1. Department of Interventional Radiology, The Fifth People’s Hospital of Jinan, Jinan, 250000 Shandong, China

2. Department of Minimally Invasive Intervention, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China

3. Department of Pathology, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China

4. Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China

5. Department of Ultrasonography, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China

Abstract

Background. The relationship between tumor suppressor gene miR-302a-3p and radiotherapy for hepatocellular carcinoma (HCC) remains unclear. This study intended to illustrate the molecular mechanism how miR-302a-3p regulated radiotherapy sensitivity of HCC. Methods. miR-302a-3p expression in HCC tissues and cells was examined by qRT-PCR. The effect of miR-302a-3p on HCC radiotherapy sensitivity were detected by CCK-8, colony formation, and flow cytometry assays. The expression levels of cell cycle-related proteins were detected by Western blot. The influence of miR-302a-3p on radiotherapy sensitivity of HCC was further investigated via cell cycle inhibitor (Caudatin) treatment. The target gene (MCL1) of miR-302a-3p was obtained by bioinformatics analysis, and their binding relationship was confirmed by RNA-binding protein immunoprecipitation assay. The mechanisms of miR-302a-3p regulating cell cycle and affecting radiotherapy sensitivity of HCC cells through MCL1 were further explored through the rescue experiments. Results. miR-302a-3p expression was remarkably reduced in radiotherapy-resistant tissues and cells of HCC. miR-302a-3p overexpression restored sensitivity of radiotherapy-resistant HCC cells to radiotherapy. Treatment with cell cycle inhibitor Caudatin could reverse suppressive effect of miR-302a-3p downregulation on sensitivity of HCC to radiotherapy. Additionally, miR-302a-3p could restrain MCL1 expression. In vitro cell assays further revealed that miR-302a-3p/MCL1 axis could enhance radiotherapy sensitivity of HCC cells by inducing G0/G1 arrest. Conclusions. miR-302a-3p facilitated radiotherapy sensitivity of HCC cells by regulating cell cycle via MCL1, which provided a new underlying target for radiotherapy resistance of HCC patients.

Funder

Doctoral Research Initiation Project of Ganzhou People’s Hospital

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3