Influence of Future Material Nano-ZrO2 and Graphene on the Mechanical Properties of Al Composites

Author:

Umar MD.1,Muraliraja R.1ORCID,Shaisundaram V. S.2,Wayessa Shiferaw Garoma3ORCID

Affiliation:

1. Department of Mechanical Engineering, Vels Institute of Science, Technology and Advanced Studies, 600117, Chennai, India

2. Department of Automobile Engineering, Vels Institute of Science, Technology and Advanced Studies, 600117, Chennai, India

3. College of Engineering and Technology, Wollega University, Nekemte, Ethiopia

Abstract

Recent developments in mechanical applications have led to the development of metal matrix composites, which represent the future of composite structures. Al7010 aluminium alloy matrix with nano-ZrO2 and graphene particle reinforced composite is created in this experiment. By adopting the stir casting procedure in two different casting, 2 percent reinforcement of zirconium dioxide and 1 percent of graphene is included in the composite materials. The composite’s metallurgical and mechanical characteristics are studied. The SEM image demonstrates uniform dispersion of the particles in the alloy matrix. The manufactured material’s ability to gather particulate matter is clearly found in SEM and EDS. The addition of zirconia particles works together to prevent the alloy matrix from dislocating, which increases the base material’s hardness as well as its tensile resistance. Similar results are also found in graphene-casting material. Results from tensile tests reveal that adding nano-zirconium dioxide particle (ZrO2) and graphene boosts the material’s tensile and hardness strength. In terms of the ultimate tensile strength (UTS), the Al7010/2% ZrO2 composite had a 6% increase and Al7010/1% graphene had a 5.5% increase above the Al7010 alloy. Compared to Al7010 alloy, the microhardness of Al7010/ZrO2 is 17.64% greater and Al7010/1% graphene is 14% greater.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3