The Imbalance Expression of DLX3 May Perform Critical Function in the Occurrence and Progression of Preeclampsia

Author:

Hou Fei12,Jin Hua2,Cao Luquan2,Jiao Xinlin1,Wang Bingyu1,Liu Haiying3ORCID,Cui Baoxia1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, China

2. Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, China

3. Department of Obstetrics and Gynecology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China

Abstract

Background. The present research focuses on preeclampsia (PE), a clinically relevant pregnancy disease. To date, the majority of research on PE was centered on placental insufficiency. However, the genes that regulate these processes, and the exact molecular mechanisms modulating these processes, are still unclear. Methods. We obtained placentae from a clinically well-specified group of patients with preeclampsia and gestationally matched control pregnancies in order to evaluate the expression of homeobox gene DLX3 by immunohistochemical staining, real-time PCR, and Western immunoblotting and determine the function of DLX3 utilizing lentivirus transfection in HTR-8/SVneo cells. Results. In the present study, we detected DLX3 expression in a clinically well defined cohort of preeclampsia-affected and gestation-matched control pregnancies. As opposed to the controls, DLX3 was overexpressed in preeclampsia-affected placentae. Moreover, we found that the in vitro cell growth and invasive ability of HTR8/SVneo cells was enhanced by the exogenous overexpression of DLX3 ( P < 0.05 ). It can be seen that DLX3 influences the cell cycle of HTR-8/SVneo cells in vitro. Conclusions. DLX3 has been shown to be strongly related to normal placental growth as well as the pathophysiology of preeclampsia. The imbalanced expression of DLX3 may perform an integral function in the occurrence and progression of preeclampsia.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3