Reliable Positioning Algorithm Using Two-Stage Adaptive Filtering in GPS-Denied Environments

Author:

Song Xiang1ORCID,Che Xiaoyu2,Jiang Huilin1ORCID,Wu Wei3

Affiliation:

1. School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China

2. National Engineering Research Center of Road Maintenance Technologies, Beijing 100095, China

3. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

To overcome the disadvantages of RFID application for outdoor vehicle positioning in completely GPS-denied environment, a fusion vehicle positioning strategy based on the integration of RFID and in-vehicle sensors is proposed. To obtain higher performance, both preliminary and fusion positioning algorithms are studied. First, the algorithm for preliminary positioning is developed in which only RFID is adopted. In the algorithm, through using the received signal strength, range from RFID tags to the reader is estimated by implementing the extreme learning machine algorithm, and then, the first-level adaptive extended Kalman filter (AEKF) which can accommodate the uncertainties in the observation noise description of RFID is employed to compute the vehicle’s location. Further, to compensate the deficiencies of preliminary positioning, the in-vehicle sensors are introduced to fuse with RFID. The second-level adaptive decentralized information filtering (ADIF) is designed to achieve fusion. In the implementation process of ADIF, the improved vehicle motion model is established to accurately describe the motion of the vehicle. To isolate the RFID failure and fuse multiple observation sources with different sample rates, instead of the centralized EKF, the decentralized architecture is employed. Meanwhile, the adaptive rule is designed to judge the effectiveness of preliminary positioning result, deciding whether to exclude RFID observations. Finally, the proposed strategy is verified through field tests. The results validate that the proposed strategy has higher accuracy and reliability than traditional methods.

Funder

Key Laboratory of Road Traffic Safety Ministry of Public Security

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3