Analysis of Line Contact Elastohydrodynamic Lubrication with the Particles under Rough Contact Surface

Author:

Chen Keying12ORCID,Zeng Liangcai12ORCID,Chen Juan12ORCID,Ding Xianzhong12ORCID

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Ministry of Education, Wuhan, Hubei 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

Abstract

A numerical solution for line contact elastohydrodynamic lubrication (EHL) occurring on the rough surface of heterogeneous materials with a group of particles is presented in this study. The film thickness disturbance caused by particles and roughness is considered into the solution system, and the film pressure between the contact gap generated by the particles and the surface roughness is obtained through a unified Reynold equation system. The inclusions buried in the matrix are made equivalent to areas with the same material as that of the matrix through Eshelby’s equivalent inclusion method and the roughness is characterized by related functions. The results present the effects of different rough topographies combined with the related parameters of the particles on the EHL performance, and the minimum film thickness distribution under different loads, running speeds, and initial viscosities are also investigated. The results show that the roughness morphology and the particles can affect the behavior of the EHL, the traction force on a square rough surface is smaller, and the soft particles have more advantages for improving the EHL performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3