Sizing Control and Hardware Implementation of a Hybrid Wind-Solar Power System, Based on an ANN Approach, for Pumping Water

Author:

Zarrad Ons1ORCID,Hajjaji Mohamed Ali12ORCID,Jemaa Aymen1ORCID,Mansouri Mohamed Nejib3

Affiliation:

1. Université de Monastir, Laboratoire d’Électronique et de Microélectronique, LR99ES30, 5000 Monastir, Tunisia

2. Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Kairouan 3100, Tunisia

3. Unit of Industrial Systems Study and Renewable Energy (ESIER), National Engineering School, University of Monastir, Monastir 5000, Tunisia

Abstract

In our day, solar energy and wind energy are becoming more and more used as renewable sources by various countries for different uses such as in an isolated home. These energies admit a unique limitation related to the characteristic of energy instability. For this, the objective of this manuscript is to command and synchronize the power flow of a hybrid system using two sources of energy (solar and wind). The first contribution of our work is the utilization of an artificial neural network controller to command, at fixed atmospheric conditions, the maximum power point. The second contribution is the optimization of the system respecting real-time constraints to increase a generating system performance. As a matter of fact, the proposed system and the controller are modeled using MATLAB/Simulink and a Xilinx System Generator is utilized for hardware implementation. The simulation results, compared with other works in the literature, present high performance, efficiency, and precision. The suggested system and its control strategy give the opportunity of optimizing the hybrid power system performance, which is utilized in rural pumping or other smart house applications.

Funder

EuE Laboratory

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3