A Computational and Structural Database Study of the Metal-Carbene Bond in Groups IA, IIA, and IIIA Imidazol-2-Ylidene Complexes

Author:

Tetteh Samuel1ORCID

Affiliation:

1. Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana

Abstract

Imidazol-2-ylidenes are important N-heterocyclic carbenes which have become universal ligands in organometallic and coordination chemistry. Generally classified as σ-donor ligands, these compounds have been used to stabilize various metal complexes which hitherto were less stable in their catalytic processes. Herein, the number and distribution of group IA, group IIA, and group IIIA metal-imidazol-2-ylidene complexes retrieved from the Cambridge Structural Database (CSD) are assessed. The data showed that the mean M-Ccarbene bond length increases with increasing ionic size but is similar across each diagonal. Dominant factors such as Lewis acidity and electrostatic attractions were found to control the bonding modes of the respective ions. Generally, the metal ions show preference for tetrahedral coordination with larger cations forming complexes with higher coordination numbers. For their high number of entries (101), tetrahedrally coordinated boron complexes with various electron withdrawing and electron donating groups were studied computationally at the DFT/B3LYP level of theory. The strength of the B-Ccarbene bond was found to depend on steric interactions between bulky groups on the borenium atom and substituents on the N-positions of the imidazol-2-ylidene ligand. This observation was further confirmed by estimation of the binding energy, natural charge, and the electron distribution in the B-Ccarbene bond.

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3