Hydrodynamic Analysis of the Flow inside the Submerged Entry Nozzle

Author:

Gonzalez-Trejo Jesus1ORCID,Real-Ramirez Cesar Augusto1ORCID,Carvajal-Mariscal Ignacio2ORCID,Sanchez-Silva Florencio2ORCID,Cervantes-De-La-Torre Francisco1ORCID,Miranda-Tello Raul1ORCID,Gabbasov Ruslan1ORCID

Affiliation:

1. Universidad Autonoma Metropolitana, Mexico City, Mexico

2. Instituto Politecnico Nacional, Mexico City, Mexico

Abstract

The quality of steel produced by continuous casting depends mainly on the characteristics of the liquid steel flow pattern within the mold. This pattern depends on the flow dynamics of the nozzle that is immersed in liquid steel. This work characterizes the fluid dynamics within two separate submerged entry nozzle models with a square cross section bore. The Froude similarity criterion and water as working fluid have been used. The models consist of a square-shaped tube with one inlet and two lateral squared exits at the bottom. To enhance the flow visualization, the models do not have exit ports. Moreover, one of the models has a “pool,” a volume at the bottom, and the other prescinds of it. The geometrical parameters and operational conditions of physical experiments were reproduced in the numerical simulations. The turbulence model used in this work is large eddy simulation (LES) with dynamic k-equation filtering. It was found that transient numerical simulations reproduce the dynamic nature of the internal flow pattern seen in physical experiments. The results show that the flow pattern within the pool nozzle is defined by only one large vortex; on the other hand, in the nozzle, without the pool, the flow pattern achieves a complex behavior characterized by two small vortexes. This study will allow to build nozzles that produce a symmetric, regular fluid flow pattern inside the mold, which leads to improvements on the process such as low energy consumption and finally in cost reductions.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3