Impact of the Surface Morphology on the Combustion of Simulated Solid Rocket Motor

Author:

Hegab Abdelkarim M.1,Sait Hani Hussain1,Hussain Ahmad2ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia

2. Department of Nuclear Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Abstract

An advanced and intensive computational solution development is integrated with an asymptotic technique, to examine the impact of the combustion surface morphology on the generated rotational flow field in a solid rocket chamber with wide ranges of forcing frequencies. The simulated rectangular chamber is closed at one end and is open at the aft end. The upper and lower walls are permeable to allow steady and unsteady injected air to generate internal flow mimicking the flow field of the combustion gases in real rocket chamber. The frequencies of the unsteady injected flow are chosen to be very close or away from the resonance frequencies of the adapted chamber. The current study accounts for a wide range of wave numbers that reflect the complexity of real burning processes. Detailed derivation for Navier-Stokes equations at the four boundaries of the chamber is introduced in the current study. Qualitative comparison is performed with recent experimental work carried out on a two-inch hybrid rocket motor using a mixture of polyethylene and aluminum powder. The higher the percentage of aluminum powder in the mixture, the more the corrugations of the combustion surface. This trend is almost similar to the computational and analytical results of a simulated solid rocket chamber.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3